Ammonia solution
Ball-and-stick model of the ammonia molecule
Ball-and-stick model of the ammonia molecule
Ball-and-stick model of the water molecule
Ball-and-stick model of the water molecule
Ball-and-stick model of the ammonium cation
Ball-and-stick model of the ammonium cation
Ball-and-stick model of the hydroxide anion
Ball-and-stick model of the hydroxide anion
Names
IUPAC name
Ammonium hydroxide
Other names
Ammonia water
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.014.225
EC Number
  • 215-647-6
E number E527 (acidity regulators, ...)
KEGG
RTECS number
  • BQ9625000
UNII
UN number 2672
  • InChI=1S/H3N.H2O/h1H3;1H2 checkY
    Key: VHUUQVKOLVNVRT-UHFFFAOYSA-N checkY
  • InChI=1/H3N.H2O/h1H3;1H2
    Key: VHUUQVKOLVNVRT-UHFFFAOYAI
  • [OH2].[NH3]
Properties[1]
NH3(aq)
Molar mass 17.031 g/mol
Appearance Colourless liquid
Odor "Fishy", highly pungent
Density 0.91 g/cm3 (25 % w/w)
0.88 g/cm3 (35 % w/w)
Melting point −57.5 °C (−71.5 °F; 215.7 K) (25 % w/w)
−91.5 °C (35% w/w)
Boiling point 37.7 °C (99.9 °F; 310.8 K) (25 % w/w)
Miscible
−31.5×10−6 cm3/mol
Thermochemistry
111 J/(mol·K)[2]
−80 kJ/mol[2]
Hazards[3][4]
Occupational safety and health (OHS/OSH):
Main hazards
Moderately toxic
GHS labelling:
GHS05: Corrosive GHS06: Toxic GHS07: Exclamation mark GHS09: Environmental hazard
Danger
H302, H314, H335, H410
P261, P271, P273, P280, P303+P361+P353, P305+P351+P338
NFPA 704 (fire diamond)
Lethal dose or concentration (LD, LC):
100 — 200 mg/kg[5]
Safety data sheet (SDS) ICSC 0215 (10%-35% solution)
Related compounds
Other anions
Ammonium chloride
Ammonium cyanide
Other cations
Tetramethylammonium hydroxide
Related compounds
Ammonia
Hydroxylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH3(aq). Although the name ammonium hydroxide suggests an alkali with the composition [NH+
4
][OH
]
, it is actually impossible to isolate samples of NH4OH. The ions NH+
4
and OH do not account for a significant fraction of the total amount of ammonia except in extremely dilute solutions

New production methods are being explored to reduce the environmental impact of ammonia production. Green synthesis approaches, utilizing renewable energy sources and minimizing waste, are gaining traction. These advancements not only contribute to a cleaner and greener chemical industry but also address concerns related to the carbon footprint associated with ammonia production..[6]

Basicity of ammonia in water

In aqueous solution, ammonia deprotonates a small fraction of the water to give ammonium and hydroxide according to the following equilibrium:

NH3 + H2O NH+
4
+ OH.

In a 1 M ammonia solution, about 0.42% of the ammonia is converted to ammonium, equivalent to pH = 11.63 because [NH+
4
] = 0.0042 M, [OH] = 0.0042 M, [NH3] = 0.9958 M, and pH = 14 + log10[OH] = 11.62. The base ionization constant is

Kb = [NH+
4
][OH]
/[NH3]
= 1.77×10−5.

Saturated solutions

Like other gases, ammonia exhibits decreasing solubility in solvent liquids as the temperature of the solvent increases. Ammonia solutions decrease in density as the concentration of dissolved ammonia increases. At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml and contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases.[7] Upon warming of saturated solutions, ammonia gas is released.

Applications

In contrast to anhydrous ammonia, aqueous ammonia finds few non-niche uses outside of cleaning agents.

Household cleaner

Diluted (1–3%) ammonia is also an ingredient of numerous cleaning agents, including many window cleaning formulas.[8] Because aqueous ammonia is a gas dissolved in water, as the water evaporates from a window, the gas evaporates also, leaving the window streak-free.

In addition to use as an ingredient in cleansers with other cleansing ingredients, ammonia in water is also sold as a cleaning agent by itself, usually labeled as simply "ammonia". It may be sold plain, lemon-scented (and typically colored yellow), or pine-scented (green). Commonly available ammonia with soap added is known as "cloudy ammonia".

Alkyl amine precursor

In industry, aqueous ammonia can be used as a precursor to some alkyl amines, although anhydrous ammonia is usually preferred. Hexamethylenetetramine forms readily from aqueous ammonia and formaldehyde. Ethylenediamine forms from 1,2-dichloroethane and aqueous ammonia.[9]

Absorption refrigeration

In the early years of the twentieth century, the vapor absorption cycle using water-ammonia systems was popular and widely used, but after the development of the vapor compression cycle it lost much of its importance because of its low coefficient of performance (about one fifth of that of the vapor compression cycle). Both the Electrolux refrigerator[10] and the Einstein refrigerator are well known examples of this application of the ammonia solution.

Water treatment

Ammonia is used to produce chloramine, which may be utilised as a disinfectant.[11] In drinking water, chloramine is preferred over direct chlorination for its ability to remain active in stagnant water pipes longer, thereby reducing the risk of waterborne infections.

Ammonia is used by aquarists for the purposes of setting up a new fish tank using an ammonia process called fishless cycling.[12] This application requires that the ammonia contain no additives.

Food production

Baking ammonia (ammonium carbonate and ammonium bicarbonate) was one of the original chemical leavening agents. It was obtained from deer antlers.[13] It is useful as a leavening agent, because ammonium carbonate is heat activated. This characteristic allows bakers to avoid both yeast's long proofing time and the quick CO2 dissipation of baking soda in making breads and cookies rise. It is still used to make ammonia cookies and other crisp baked goods, but its popularity has waned because of ammonia's off-putting smell and concerns over its use as a food ingredient compared to modern-day baking powder formulations. It has been assigned E number E527 for use as a food additive in the European Union.

Aqueous ammonia is used as an acidity regulator to bring down the acid levels in food. It is classified in the United States by the Food and Drug Administration as generally recognized as safe (GRAS) when using the food grade version.[14] Its pH control abilities make it an effective antimicrobial agent.

Furniture darkening

In furniture-making, ammonia fuming was traditionally used to darken or stain wood containing tannic acid. After being sealed inside a container with the wood, fumes from the ammonia solution react with the tannic acid and iron salts naturally found in wood, creating a rich, dark stained look to the wood. This technique was commonly used during the arts and crafts movement in furniture – a furniture style which was primarily constructed of oak and stained using these methods.[15]

Treatment of straw for cattle

Ammonia solution is used to treat straw, producing "ammoniated straw" making it more edible for cattle.[16]

Laboratory use

Aqueous ammonia is used in traditional qualitative inorganic analysis as a complexant and base. Like many amines, it gives a deep blue coloration with copper(II) solutions. Ammonia solution can dissolve silver oxide residues, such as those formed from Tollens' reagent. It is often found in solutions used to clean gold, silver, and platinum jewelry, but may have adverse effects on porous gem stones like opals and pearls.[17]

See also

References

  1. Record of Ammonia solution in the GESTIS Substance Database of the Institute for Occupational Safety and Health .
  2. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 978-0-618-94690-7.
  3. C&L Inventory.
  4. "GESTIS-Stoffdatenbank". gestis.dguv.de.
  5. Ammonium hydroxide toxicity
  6. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 187. ISBN 978-0-13-039913-7.
  7. Max Appl (2006). "Ammonia". Ammonia, in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_143.pub2. ISBN 978-3527306732.
  8. Christian Nitsch; Hans-Joachim Heitland; Horst Marsen; Hans-Joachim Schlüussler (2005). "Cleansing Agents". Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a07_137. ISBN 978-3527306732.
  9. Eller, Karsten; Henkes, Erhard; Rossbacher, Roland; Höke, Hartmut (2000). "Amines, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a02_001. ISBN 978-3-527-30673-2.
  10. Vapour Absorption Cycle - Domestic Electrolux Refrigerator
  11. "Chloramines in Drinking Water". EPA. US Environmental Protection Agency. 20 October 2015. Retrieved 6 March 2018.
  12. "Fishless Cycling". Aquarium Advice. Retrieved 6 March 2018.
  13. Olver, Lynne (24 June 2012). "history notes—cookies, crackers & biscuits". The Food Timeline. Archived from the original on 17 July 2012. Retrieved 6 January 2021.
  14. Database of Select Committee on GRAS Substances (SCOGS) Reviews: Ammonium hydroxide, U.S. Food and Drug Administration
  15. Rigers, Shayne; Umney, Nick (12 August 2009). "Acidic and alkaline stains". Wood Coatings: Theory and Practice. Amsterdam: Elsevier. pp. 618–9. ISBN 978-0-444-52840-7.
  16. "Is it Bedding or is it Feed? | Ohio BEEF Cattle Letter".
  17. The Jeweler's Bench. 2015. Fine Jewelry Cleaner. Littleton, Colo.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.