The radiative forcing (warming influence) of long-lived atmospheric greenhouse gases has accelerated, almost doubling in 40 years.[1][2][3]

This is a list of the most influential long-lived, well-mixed greenhouse gases, along with their tropospheric concentrations and direct radiative forcings, as identified by the Intergovernmental Panel on Climate Change (IPCC).[4] Abundances of these trace gases are regularly measured by atmospheric scientists from samples collected throughout the world.[5][6][7] Since the 1980s, their forcing contributions (relative to year 1750) are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models.[3]

This list excludes:


Combined Summary from IPCC Assessment Reports (TAR, AR4, AR5, AR6)

Mole fractions: μmol/mol = ppm = parts per million (106); nmol/mol = ppb = parts per billion (109); pmol/mol = ppt = parts per trillion (1012).

Species Lifetime
(years)
[4]:731
100-yr
GWP
[4]:731
Mole Fraction [ppt - except as noted] Radiative forcing [W m−2] [B]
Base
1750
TAR[13]
1998
AR4[14]
2005
AR5[4]:678
2011
Data[15][16]
2020
TAR[13]
1998
AR4[14]
2005
AR5[4]:678
2011
AR6[10]:4–9
2019
CO2 [ppm][A]1278365379391 1.461.661.822.16
CH4 [ppb]12.4287001,7451,7741,801 0.480.480.480.54
N2O [ppb]121265270314319324 0.150.160.170.21
CFC-11454,6600268251238 0.070.0630.0620.066
CFC-1210010,2000533538528 0.170.170.170.18
CFC-1364013,90004-2.7 cfc130.001-0.00070.0009
CFC-113856,4900847974 0.030.0240.0220.021
CFC-1141907,710015-- cfc1140.005--0.005
CFC-1151,0205,86007-8.37 cfc1150.001-0.00170.0021
HCFC-2211.95,2800132169213 0.030.0330.04470.0528
HCFC-141b9.22,5500101821.4 0.0010.00250.00340.0039
HCFC-142b17.25,0200111521.2 0.0020.00310.00400.0043
CH3CCl35160069196.32 0.0040.00110.00040.0001
CCl4261,73001029385.8 0.010.0120.01460.0129
HFC-2322212,4000141824 0.0020.00330.00430.0062
HFC-325.26770--4.92 --0.00050.0022
HFC-12528.23,1700-3.79.58 -0.00090.00220.0069
HFC-134a13.41,30007.53562.7 0.0010.00550.01000.018
HFC-143a47.14,8000--12.0 --0.00190.0040
HFC-152a1.513800.53.96.4 0.0000.00040.00060.0007
CF4 (PFC-14)50,0006,63040807479 0.0030.00340.00400.0051
C2F6 (PFC-116)10,00011,100032.94.16 0.0010.00080.00100.0013
SF63,20023,50004.25.67.28 0.0020.00290.00410.0056
SO2F2364,0900--1.71 --0.00030.0005
NF350016,1000--0.9 --0.00020.0004

A The IPCC states that "no single atmospheric lifetime can be given" for CO2.[4]:731 This is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon.[17] As of year 2014, fossil CO2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on the projections of coupled models referenced in the AR5 assessment.[18] A substantial fraction (20-35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size.[19][20]
B Values are relative to year 1750. AR6 reports the effective radiative forcing which includes effects of rapid adjustments in the atmosphere and at the surface.[21]

Gases from IPCC Fourth Assessment Report

The following table has its sources in Chapter 2, p. 141, Table 2.1. of the IPCC Fourth Assessment Report, Climate Change 2007 (AR4), Working Group 1 Report, The Physical Science Basis.[14]

Mole fractions and their changes Radiative forcing
Species2005Change since 19982005 (W m−2)1998 (%)
CO2379 ± 0.65 μmol/mol+13 μmol/mol1.66+13
CH41,774 ± 1.8 nmol/mol+11 nmol/mol0.48
N2O319 ± 0.12 nmol/mol+5 nmol/mol0.16+11
CFC-11251 ± 0.36 pmol/mol−130.063−5
CFC-12538 ± 0.18 pmol/mol+40.17+1
CFC-11379 ± 0.064 pmol/mol−40.024−5
HCFC-22169 ± 1.0 pmol/mol+380.033+29
HCFC-141b18 ± 0.068 pmol/mol+90.0025+93
HCFC-142b15 ± 0.13 pmol/mol+60.0031+57
CH3CCl319 ± 0.47 pmol/mol−470.0011−72
CCl493 ± 0.17 pmol/mol−70.012−7
HFC-1253.7 ± 0.10 pmol/mol+2.60.0009+234
HFC-134a35 ± 0.73 pmol/mol+270.0055+349
HFC-152a3.9 ± 0.11 pmol/mol+2.40.0004+151
HFC-2318 ± 0.12 pmol/mol+40.0033+29
SF65.6 ± 0.038 pmol/mol+1.50.0029+36
CF4 (PFC-14)74 ± 1.6 pmol/mol0.0034
C2F6 (PFC-116)2.9 ± 0.025 pmol/mol+0.50.0008+22

Gases from IPCC Third Assessment Report

The following table has its sources in Chapter 6, p. 358, Table 6.1. of the IPCC Third Assessment Report, Climate Change 2001 (TAR), Working Group 1, The Scientific Basis.[13]

Gases relevant to radiative forcing only

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing (Wm−2) Specific heat at STP
(J kg−1)
Carbon dioxideCarbon Dioxide(CO2)365 μmol/mol87 μmol/mol1.460.819
MethaneMarsh gas(CH4)1,745 nmol/mol1,045 nmol/mol0.482.191
Nitrous oxideLaughing gas(N2O)314 nmol/mol44 nmol/mol0.150.88
TetrafluoromethaneCarbon tetrafluoride(CF4)80 pmol/mol40 pmol/mol0.0031.33
HexafluoroethanePerfluoroethane(C2F6)3 pmol/mol3 pmol/mol0.0010.067
Sulfur hexafluorideSulfur fluoride(SF6)4.2 pmol/mol4.2 pmol/mol0.0020.074
HFC-23Trifluoromethane(CHF3)14 pmol/mol14 pmol/mol0.0020.064
HFC-134a1,1,1,2-TetrafluoroethaneC2H2F47.5 pmol/mol7.5 pmol/mol0.0010.007
HFC-152a1,1-Difluoroethane(C2H4F2)0.5 pmol/mol0.5 pmol/mol0.0000.04

Gases relevant to radiative forcing and ozone depletion

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing
(Wm−2)
CFC-11§Trichlorofluoromethane(CFCl3)268 pmol/mol268 pmol/mol0.07
CFC-12§Dichlorodifluoromethane(CF2Cl2)533 pmol/mol533 pmol/mol0.17
CFC-13§Chlorotrifluoromethane(CClF3)4 pmol/mol4 pmol/mol0.001
CFC-1131,1,1-Trichlorotrifluoroethane(C2F3Cl3)84 pmol/mol84 pmol/mol0.03
CFC-1141,2-Dichlorotetrafluoroethane(C2F4Cl2)15 pmol/mol15 pmol/mol0.005
CFC-115Chloropentafluoroethane(C2F5Cl)7 pmol/mol7 pmol/mol0.001
Carbon tetrachlorideTetrachloromethane(CCl4)102 pmol/mol102 pmol/mol0.01
1,1,1-TrichloroethaneMethyl chloroform(CH3CCl3)69 pmol/mol69 pmol/mol0.004
HCFC-141b1,1-Dichloro-1-fluoroethane(C2H3FCl2)10 pmol/mol10 pmol/mol0.001
HCFC-142b1-Chloro-1,1-difluoroethane(C2H3F2Cl)11 pmol/mol11 pmol/mol0.002
Halon-1211Bromochlorodifluoromethane(CClF2Br)3.8 pmol/mol3.8 pmol/mol0.001
Halon-1301Bromotrifluoromethane(CF3Br)2.5 pmol/mol2.5 pmol/mol0.001

See also

References

  1. "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA.gov. National Oceanographic and Atmospheric Administration (NOAA). Spring 2023. Archived from the original on 24 May 2023.
  2. "Annual Greenhouse Gas Index". U.S. Global Change Research Program. Retrieved 5 September 2020.
  3. 1 2 Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  4. 1 2 3 4 5 6 7 "Chapter 8". AR5 Climate Change 2013: The Physical Science Basis.
  5. "Global Monitoring Laboratory". NOAA Earth System Research Laboratories. Retrieved 2020-12-11.
  6. "World Data Centre for Greenhouse Gases". World Meteorological Organization Global Atmosphere Watch Programme and Japan Meteorological Agency. Retrieved 2020-12-11.
  7. "Advanced Global Atmospheric Gas Experiment". Massachusetts Institute of Technology. Retrieved 2020-12-11.
  8. Gavin Schmidt (2010-10-01). "Taking the Measure of the Greenhouse Effect". NASA Goddard Institute for Space Studies - Science Briefs.
  9. "Atmospheric Concentration of Greenhouse Gases" (PDF). U.S. Environmental Protection Agency. 2016-08-01.
  10. 1 2 Dentener F. J.; B. Hall; C. Smith, eds. (2021-08-09), "Annex III: Tables of historical and projected well-mixed greenhouse gas mixing ratios and effective radiative forcing of all climate forcers", Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press
  11. "Which Gases Are Greenhouse Gases?". American Chemical Society. Retrieved 2021-05-31.
  12. Höpfner, M.; Milz, M.; Buehler, S.; Orphall, J.; Stiller, G. (24 May 2012). "The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)". Geophysical Research Letters. 39 (L10706). doi:10.1029/2012GL051409. ISSN 1944-8007. S2CID 128823108.
  13. 1 2 3 "Chapter 6". TAR Climate Change 2001: The Scientific Basis. p. 358.
  14. 1 2 3 "Chapter 2". AR4 Climate Change 2007: The Physical Science Basis. p. 141.
  15. "Long-term global trends of atmospheric trace gases". NOAA Earth System Research Laboratories. Retrieved 2021-02-11.
  16. "AGAGE Data and Figures". Massachusetts Institute of Technology. Retrieved 2021-02-11.
  17. Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019
  18. "Figure 8.SM.4" (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report - Supplemental Material. p. 8SM-16.
  19. Archer, David (2009). "Atmospheric lifetime of fossil fuel carbon dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933.
  20. Joos, F.; Roth, R.; Fuglestvedt, J.D.; et al. (2013). "Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis". Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012. hdl:20.500.11850/58316.
  21. Hansen, J.; Sato, M.; Ruedy, R.; et al. (2005). "Efficacy of Climate Forcings". Journal of Geophysical Research: Atmospheres. 119 (D18104). doi:10.1029/2005JD005776.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.