HSD11B2
Identifiers
AliasesHSD11B2, AME, AME1, HSD11K, HSD2, SDR9C3, hydroxysteroid (11-beta) dehydrogenase 2, hydroxysteroid 11-beta dehydrogenase 2
External IDsOMIM: 614232 MGI: 104720 HomoloGene: 20088 GeneCards: HSD11B2
Orthologs
SpeciesHumanMouse
Entrez

3291

15484

Ensembl

ENSG00000176387

ENSMUSG00000031891

UniProt

P80365

P51661

RefSeq (mRNA)

NM_000196

NM_008289

RefSeq (protein)

NP_000187

NP_032315

Location (UCSC)Chr 16: 67.43 – 67.44 MbChr 8: 106.25 – 106.25 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Corticosteroid 11-β-dehydrogenase isozyme 2 also known as 11-β-hydroxysteroid dehydrogenase 2 is an enzyme that in humans is encoded by the HSD11B2 gene.[5][6][7]

Function

Corticosteroid 11-β-dehydrogenase isozyme 2 is an NAD+-dependent enzyme expressed in aldosterone-selective epithelial tissues such as the kidney, colon, salivary and sweat glands. HSD211B2 expression is also found in the brainstem in a small, aldosterone-sensitive subset of neurons located in the nucleus of the solitary tract referred to as HSD2 neurons.[8]

In these tissues, HSD11B2 oxidizes the glucocorticoid cortisol to the inactive metabolite cortisone, thus preventing illicit activation of the mineralocorticoid receptor. This protective mechanism is necessary because cortisol circulates at 100- to 1000-fold higher concentrations than aldosterone, and binds with equal affinity to the mineralocorticoid receptor, thereby out-competing aldosterone in cells that do not produce HSD11B2.

This glucocorticoid-inactivating enzyme is also expressed in tissues that do not express the mineralocorticoid receptor, such as the placenta and testis, as well as parts of the developing brain, including the rhombencephalic progenitor cells that proliferate into cerebellar granule cells. In these tissues, HSD11B2 protects cells from the growth-inhibiting and/or pro-apoptotic effects of cortisol, particularly during embryonic development.

Clinical significance

Inhibition of this enzyme, for example by the compound glycyrrhetinic acid enzymatically converted from glycyrrhizic acid, found in natural liquorice, results in a condition known as pseudohyperaldosteronism. A genetically inherited deficiency of HSD11B2 is the underlying cause of the syndrome of apparent mineralocorticoid excess.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000176387 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031891 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS (November 1994). "Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme". Mol. Cell. Endocrinol. 105 (2): R11–7. doi:10.1016/0303-7207(94)90176-7. PMID 7859916. S2CID 8240801.
  6. Brown RW, Chapman KE, Kotelevtsev Y, Yau JL, Lindsay RS, Brett L, Leckie C, Murad P, Lyons V, Mullins JJ, Edwards CR, Seckl JR (February 1996). "Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2". Biochem. J. 313 (Pt 3): 1007–17. doi:10.1042/bj3131007. PMC 1216963. PMID 8611140.
  7. "Entrez Gene: HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2".
  8. Geerling, Joel C.; Arthur D. Loewy (September 2009). "Aldosterone in the brain". American Journal of Physiology. Renal Physiology. 297 (3): F559–76. doi:10.1152/ajprenal.90399.2008. PMC 2739715. PMID 19261742.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.