The phase portrait of the pendulum equation x' + sin x = 0. The highlighted curve shows the heteroclinic orbit from (x, x) = (–π, 0) to (x, x) = (π, 0). This orbit corresponds with the (rigid) pendulum starting upright, making one revolution through its lowest position, and ending upright again.

In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end of the orbit are the same, the orbit is a homoclinic orbit.

Consider the continuous dynamical system described by the ordinary differential equation

Suppose there are equilibria at Then a solution is a heteroclinic orbit from to if both limits are satisfied:

This implies that the orbit is contained in the stable manifold of and the unstable manifold of .

Symbolic dynamics

By using the Markov partition, the long-time behaviour of hyperbolic system can be studied using the techniques of symbolic dynamics. In this case, a heteroclinic orbit has a particularly simple and clear representation. Suppose that is a finite set of M symbols. The dynamics of a point x is then represented by a bi-infinite string of symbols

A periodic point of the system is simply a recurring sequence of letters. A heteroclinic orbit is then the joining of two distinct periodic orbits. It may be written as

where is a sequence of symbols of length k, (of course, ), and is another sequence of symbols, of length m (likewise, ). The notation simply denotes the repetition of p an infinite number of times. Thus, a heteroclinic orbit can be understood as the transition from one periodic orbit to another. By contrast, a homoclinic orbit can be written as

with the intermediate sequence being non-empty, and, of course, not being p, as otherwise, the orbit would simply be .

See also

References

  • John Guckenheimer and Philip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, (Applied Mathematical Sciences Vol. 42), Springer
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.