Triassic graphical timeline | ||||||||||||||||||
−255 — – −250 — – −245 — – −240 — – −235 — – −230 — – −225 — – −220 — – −215 — – −210 — – −205 — – −200 — |
| |||||||||||||||||
The Carnian pluvial episode (CPE), often called the Carnian pluvial event, was an interval of major change in global climate that was synchronous with significant changes in Earth's biota both in the sea and on land. It occurred during the latter part of the Carnian Stage, a subdivision of the late Triassic period, and lasted for perhaps 1-2 million years (around 234-232 million years ago).[6][7] The CPE represents a significant episode in the evolution and diversification of many taxa that are important today, among them some of the earliest dinosaurs (which include the ancestors of birds), lepidosaurs (ancestors of modern-day snakes and lizards), pterosaurs and true mammals. In the marine realm it saw the first appearance among the microplankton of coccoliths and dinoflagellates,[8][7][9] with the latter linked to the rapid diversification of scleractinian corals through the establishment of symbiotic zooxanthellae within them. The CPE also saw the extinction of many aquatic invertebrate species, especially among the ammonoids, bryozoa, and crinoids.[6]
Evidence for the CPE is observed in Carnian strata worldwide, and in sediments of both terrestrial and marine environments. On land, the prevailing arid climate across much of the supercontinent Pangea shifted briefly to a hotter and more humid climate, with a significant increase in rainfall and runoff.[6][10][8][11][12] In the oceans, there was reduced deposition of carbonate minerals. This may reflect the extinction of many carbonate-forming organisms, but may also be due to a rise in the carbonate compensation depth, below which most carbonate shells dissolve and leave few carbonate particles on the ocean floor to form sediments.[13][14][15][16]
Climate change during the Carnian pluvial event is reflected in chemical changes in Carnian strata across the CPE, which suggest that global warming was prevalent at the time. This climate change was probably linked to the eruption of extensive flood basalts as the Wrangellia Terrane was accreted onto the northwestern end of the North American Plate.[10]
History and nomenclature
Environmental disturbance and high extinction rates were observed for sediments of the Carnian stage long before a global climate perturbation was proposed. Schlager & Schöllnberger (1974) drew attention to a dark siliciclastic layer which abruptly interrupted a long period of carbonate deposition in the Northern Limestone Alps.[17] They termed this stratigraphic "wende" (turning point) the Reingrabener Wende, and it has also been called the Reingraben event or Raibl event.[14][18] Several Carnian terrestrial formations (namely the Schilfsandstein of Germany and various members of the United Kingdom's Mercia Mudstone Group) are intervals of river sediments enriched with kaolinitic clay and plant debris, despite having been deposited between more arid strata. Humidity-adapted palynomorphs in New Brunswick, karst topography in the U.K., and a carbon isotope excursion in Israel were all reported for the middle of the Carnian prior to 1989. The Julian-Tuvalian boundary experienced high extinction rates among many marine invertebrates, while an extinction among land vertebrates was suggested to occur in the late Carnian.[6]
In 1989, a paper by Michael J. Simms and Alastair H. Ruffell combined these disparate observations into a new hypothesis, pointing to an episode of increased rainfall synchronous with significant ecological turnover in the mid-Carnian.[6] The paper was inspired by a conversation between Simms and Ruffell, on 10 November 1987 at Birmingham University, that connected Ruffell's research on lithological changes in the Mercia Mudstone Group to Simms's research on crinoid extinction.[19] A key aspect of their hypothesis was that the evidence used to demonstrate the climate change was entirely independent of the evidence for biotic change; fossils were not used in any way to infer climate climate change. Their hypothesized climatic disturbance, which they named the Carnian pluvial episode, was tentatively considered to be a result of oceanic and/or volcanic instability related to the early rifting of Pangea, but at that time direct evidence of this was lacking.[6] Simms and Ruffell published several more papers in the coming years,[20][21] but their hypothesis was not widely accepted.[19] A strong critique by Visscher et al. (1994) argued that aridity-adapted pollen stayed abundant through the entire Carnian of Germany, suggesting that the Schilfsandstein was simply indicative of an invading river system rather than widespread climate change.[22] Their critique also coined the term "Carnian pluvial event", which would eventually become among the most widespread names for the climatic disturbance.[16][23]
The obscurity of Simms and Ruffell's hypothesis began to dissipate in the late 2000s, as further support accumulated from studies on Carnian sites in Italy.[16][24][19] Interest in the hypothesis was greatly enhanced by a 2008 meeting and workshop on Triassic climate at the Museum of Nature South Tyrol in Bolzano, Italy.[23][19] However, even as the global nature of the CPE became increasingly accepted, its ultimate cause was still hotly debated going into the 2010s. Even its nomenclature was not agreed upon, with various authors applying names such as the middle Carnian wet intermezzo,[25][26] Carnian humid episode,[20][27][28] Carnian pluvial phase,[29][30] and Carnian crisis.[31] Carbon and Osmium isotope records published over the coming years supported a strong link between the Carnian climate disturbances and the Wrangellia large igneous province, but many questions remain unanswered.[32][10] A geological workshop focusing on the CPE met in 2018 at the Hanse-Wissenschaftskolleg (HWK) Institute for Advanced Study in Delmenhorst, Germany. The workshop was intended to spur further research on the mechanisms, impact, and stratigraphy of the CPE, as well as its relevance for understanding modern climate change. It also attempted to standardize the nomenclature of the CPE, rejecting descriptors such as "event" (typically applied to geological processes under a million years in duration) or "middle Carnian" (a nebulous term with no equivalent geological substage).[33]
Geological evidence
Climate during the Carnian pluvial episode
The Carnian pluvial episode introduced markedly more humid conditions across the globe, interrupting the otherwise arid climate of the Late Triassic period. This humidity was related to increased rainfall during the CPE, evidence of which includes:
- siliciclastic (high silica-content) sediment in sedimentary basins, reflecting a high level of continental weathering and runoff;
- significant karst conduits (caves) in Palaeozoic limestone inliers beneath the Late Triassic terrestrial unconformity. (the topographic context of these caves is consistent with a Carnian age [34] although some claim a Rhaetian age based on localised occurrence of microfossils[35])
- the development of histic and spodic palaeosols, fossil soils which are typical of a tropical humid climate with more water entering through precipitation than leaving through evapotranspiration;
- hygrophytic palynological assemblages that reflect vegetation more adapted to a humid climate;
- the widespread presence of amber.
This usually wet climate of the CPE was periodically interrupted by drier climates typical of the rest of the Late Triassic period.[29]
Global warming was also prevalent during the Carnian pluvial event. This is evidenced by oxygen isotope analyses performed on conodont apatite from the CPE, which show an approximately 1.5‰ negative shift in the stable isotope δ18O, suggesting global warming of 3-4 °C during the CPE and/or a change in seawater salinity.[31][36] This warming was probably related to extensive volcanic activity at the time, evidenced by carbon isotope trends across the CPE.[10] This volcanic activity was in turn probably related to the formation of the Wrangellia Large igneous province around the same time, which created vast quantities of igneous (volcanic) rocks that were accreted onto the northwest end of the North American Plate (now the Wrangell Mountains, Alaska).[10]
There is some evidence for seabed euxinia (no oxygen and high toxic sulfide concentrations) during the CPE. Limestones are enriched in manganese ions near the top of the Zhuganpo Formation of south China. Manganese ions are concentrated and soluble in deep euxinic waters, but precipitate in carbonates at the base of the oxygenated zone. Increasing manganese concentrations indicate a narrowing of the oxygenated zone and a corresponding expansion of euxinic water.[28]
Effects on carbonate platforms
At the onset of the CPE a sharp change in carbonate platform geometries is recorded in western Tethys. High relief, mainly isolated, small carbonate platforms surrounded by steep slopes, typical of the early Carnian, were replaced by low-relief carbonate platforms featuring low-angle slopes (i.e., ramps). This turnover is related to a major change in the biological community responsible for calcium carbonate precipitation (i.e. carbonate factory). The highly-productive, mainly bacterial-dominated biological community (M-factory) whose action led to the carbonate production on high-relief platforms was substituted by a less productive mollusc-metazoan-dominated community (C-T factories).
In the South China block, the demise of carbonate platforms is coupled with the deposition of sediments typical of anoxic environments (black shales). Thanks to low oxygen levels, animal remains were often well-preserved in sedimentary deposits called Lagerstätten. These Lagerstätten are rich in crinoids and reptiles, such as ichthyosaurs.
Geochemical traces
Carbon
The CPE is marked by disruptions to geochemical cycles, most notably the carbon cycle. Sediments corresponding to the base of the episode show a prominent -2 to -4‰ δ13C excursion, indicating the release of a lightweight carbon isotope, carbon-12, into the atmosphere.[37] This excursion was first mentioned regarding carbonates in Israel,[6] and was later reported in more detail from fragments of carbonized wood in the Dolomites.[10] It has been confirmed in various carbon-based sediments throughout Europe and Asia.[37][28][38][39] More precise stratigraphic evaluation of European outcrops has resolved this excursion into three or possibly four major pulses, spanning the late Julian and early Tuvalian. Each pulse can be equated with an interval of abnormal sedimentation on land and sea. The third excursion, at the Julian-Tuvalian boundary, is correlated with major ammonoid and conodont extinctions.[40]
Osmium
Norwegian shale and Japanese chert from the Ladinian-Carnian boundary show a marked change in the ratio of seawater osmium isotopes. The relative abundance of osmium-187 over osmium-188 declines strongly through most of the Julian before rebounding and stabilizing in the Tuvalian. The decline is attributed to early phases of the Wrangellia LIP enriching the ocean with osmium-188. Osmium-188 is preferentially sourced directly from the mantle, while osmium-187 is a radiogenic isotope supplied from eroded land.[32][41][42]
Mercury
In the Alps, moderate to high concentrations of mercury occur alongside carbon cycle disruptions, just prior to the sediment disruption which marks the CPE. These mercury spikes occur in well-oxygenated mudstones, meaning that they are not a consequence of redox fluctuations. The ratio of mercury to organic carbon is stronger and occurs earlier in areas corresponding to open marine environments. Although the mercury spikes do not correlate with any indicators of terrestrial runoff, runoff could help maintain high mercury concentrations in the ocean through the CPE. The most parsimonious explanation is that the mercury was initially derived from a pulse of volcanic activity, particularly the Wrangellia LIP. This further supports a volcanic cause of the Carnian pluvial episode.[43] Mercury spikes are also found alongside carbon cycle disruptions in both marine[44] and lake[45] sediments in China. These mercury spikes have no trace of mass-independent fractionation, meaning that their isotope distribution is most consistent with a volcanic origin and atmospheric deposition.[44]
Biological turnover
Conodonts, ammonoids, crinoids, bryozoa and green algae experienced high extinction rates during the CPE. Other organisms radiated and diversified during the interval, such as dinosaurs, calcareous nannofossils, corals and conifers.[6][8][20][21]
The oldest dinosaur-bearing fossil assemblage, the Ischigualasto Formation of Argentina, has been radiometrically dated back to 230.3 to 231.4 million years ago. This age is very similar to the minimum age calculated for the CPE (≈230.9 million years ago). Ichnofossil comparisons of various tetrapods between the time before, during and after the CPE suggest an explosive radiation of dinosaurs due to the Carnian humid phase.[46] However, while avemetatarsalian diversity, diversification rate, and size disparity does increase through the Carnian, it increases faster in the Ladinian and Norian, suggesting that the CPE was not a major influence on the rise of dinosaurs.[47]
The oldest widespread amber deposition occurred during the CPE.[48] Carnian amber droplets from Italian paleosols are the oldest amber deposits known to preserve arthropods and microorganisms.[49] Amber would not reappear in the fossil record until the Late Jurassic, though it would take until the Early Cretaceous for amber to occur in concentrations equivalent to or exceeding Carnian amber.[50][48]
The first planktonic calcifiers occurred just after the CPE and might have been calcareous dinocysts, i.e., calcareous cysts of dinoflagellates.
Possible causes
Eruption of Wrangellia flood basalts
The recent discovery of a prominent δ13C negative shift in higher plants' n-alkanes suggests a massive CO2 injection in the atmosphere-ocean system at the base of the CPE. The minimum radiometric age of the CPE (≈230.9 Ma) is similar in age to the basalts of the Wrangellia large igneous province (LIP). In the geological record, LIP volcanism is often correlated to episodes of major climate changes and extinctions, which may be caused by pollution of ecosystems with massive release of volcanic gases such as CO2 and SO2. Large release of CO2 in the atmosphere-ocean system by Wrangellia can explain the increased supply of siliciclastic material into basins, as observed during the CPE. The increase of CO2 in the atmosphere could have resulted in global warming and consequent acceleration of the hydrological cycle, thus strongly enhancing the continental weathering. Moreover, if rapid enough, a sudden rise of pCO2 levels could have resulted in acidification of seawater with the consequent rise of the carbonate compensation depth (CCD) and a crisis of carbonate precipitation (e.g. demise of carbonate platforms in the western Tethys). On top of all that, the global warming brought on by the flood basalt event was likely exacerbated by the release of methane clathrates.[51]
Uplift during the Cimmerian orogeny
According to an alternative hypothesis, the Carnian pluvial episode was a regional climatic perturbation mostly visible in the western Tethys and related to the uplift of a new mountain range, the Cimmerian orogen, which resulted from the closing of a Tethyan northern branch, east of the present European continent.
The new mountain range was forming on the southern side of Laurasia, and acted then as the Himalayas and Asia do today for the Indian Ocean, maintaining a strong pressure gradient between the ocean and continent, and thus generating a monsoon. Summer monsoonal winds were thus intercepted by the Cimmerian mountain range and generated strong rain, thus explaining the switch to humid climate recognized in western Tethys sediments.[31][14]
References
- ↑ Widmann, Philipp; Bucher, Hugo; Leu, Marc; et al. (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi:10.3389/feart.2020.00196.
- ↑ McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771.
- ↑ Retallack, G. J.; Veevers, J.; Morante, R. (1996). "Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants". GSA Bulletin. 108 (2): 195–207. Bibcode:1996GSAB..108..195R. doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2. Retrieved 2007-09-29.
- ↑ Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004). "Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction". Science. 305 (5683): 506–9. Bibcode:2004Sci...305..506P. doi:10.1126/science.1097023. PMID 15273391. S2CID 35498132.
- ↑ Ogg, James G.; Ogg, Gabi M.; Gradstein, Felix M. (2016). "Triassic". A Concise Geologic Time Scale: 2016. Elsevier. pp. 133–149. ISBN 978-0-444-63771-0.
- 1 2 3 4 5 6 7 8 Simms, M. J.; Ruffell, A. H. (1989). "Synchroneity of climatic change and extinctions in the Late Triassic". Geology. 17 (3): 265–268. Bibcode:1989Geo....17..265S. doi:10.1130/0091-7613(1989)017<0265:soccae>2.3.co;2.
- 1 2 Furin, S.; Preto, N.; Rigo, M.; Roghi, G.; Gianolla, P.; Crowley, J.L.; Bowring, S.A. (2006). "High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nanoplankton, lepidosaurs, and dinosaurs". Geology. 34 (12): 1009–1012. doi:10.1130/g22967a.1.
- 1 2 3 4 5 Dal Corso, Jacopo; Bernardi, Massimo; Sun, Yadong; Song, Haijun; Seyfullah, Leyla J.; Preto, Nereo; Gianolla, Piero; Ruffell, Alastair; Kustatscher, Evelyn; Roghi, Guido; Merico, Agostino (2020). "Extinction and dawn of the modern world in the Carnian (Late Triassic)". Science Advances. 6 (38): eaba0099. Bibcode:2020SciA....6...99D. doi:10.1126/sciadv.aba0099. PMC 7494334. PMID 32938682.
- ↑ Jones, M.E.H.; Anderson, C.L.; Hipsley, C.A.; Müller, J.; Evans, S.E.; Schoch, R. (2013). "Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)". BMC Evolutionary Biology. 12: 208. doi:10.1186/1471-2148-13-208. PMC 4016551. PMID 24063680.
- 1 2 3 4 5 6 Dal Corso, J.; Mietto, P.; Newton, R.J.; Pancost, R.D.; Preto, N.; Roghi, G.; Wignall, P.B. (2012). "Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts". Geology. 40 (1): 79–82. Bibcode:2012Geo....40...79D. doi:10.1130/g32473.1.
- ↑ Jiang, Haishui; Yuan, Jinling; Chen, Yan; Ogg, James G.; Yan, Jiaxin (15 April 2019). "Synchronous onset of the Mid-Carnian Pluvial Episode in the East and West Tethys: Conodont evidence from Hanwang, Sichuan, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 173–180. Bibcode:2019PPP...520..173J. doi:10.1016/j.palaeo.2019.02.004. S2CID 135408066. Retrieved 3 December 2022.
- ↑ Li, Liqin; Kürschner, Wolfram M.; Lu, Ning; Chen, Hongyu; An, Pengcheng; Wang, Yongdong (September 2022). "Palynological record of the Carnian Pluvial Episode from the northwestern Sichuan Basin, SW China". Review of Palaeobotany and Palynology. 304: 104704. doi:10.1016/j.revpalbo.2022.104704. S2CID 249528886. Retrieved 3 December 2022.
- ↑ Keim, L.; Schlager, W. (2001). "Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy)". Sedimentary Geology. 139 (3–4): 261–283. Bibcode:2001SedG..139..261K. doi:10.1016/s0037-0738(00)00163-9.
- 1 2 3 Hornung, T.; Krystin, L.; Brandner, R. (2007). "A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?". Journal of Asian Earth Sciences. 30 (2): 285–302. Bibcode:2007JAESc..30..285H. doi:10.1016/j.jseaes.2006.10.001.
- ↑ Stefani, M.; Furin, S.; Gianolla, P. (2010). "The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites". Palaeogeography, Palaeoclimatology, Palaeoecology. 290 (1–4): 43–57. Bibcode:2010PPP...290...43S. doi:10.1016/j.palaeo.2010.02.018.
- 1 2 3 Rigo, M.; Preto, N.; Roghi, G.; Tateo, F.; Mietto, P. (2007). "A rise in the Carbonate Compensation Depth of western Tethys in the Carnian: deep-water evidence for the Carnian Pluvial Event". Palaeogeography, Palaeoclimatology, Palaeoecology. 246: 188–205. doi:10.1016/j.palaeo.2006.09.013.
- ↑ Schlager, W.; Schöllnberger, W. (1974). "Das Prinzip stratigraphischer Wenden in der Schichtfolge der Nördlichen Kalkalpen" (PDF). Österreichische Geologische Gesellschaft. 66–67: 165–193. Archived from the original (PDF) on 2016-03-04.
- ↑ The Geologic Time Scale 2012 Volume 2. Elsevier Science Ltd. 2012-08-14. p. 690. ISBN 978-0444594259.
- 1 2 3 4 Simms, Michael J.; Ruffell, Alastair H. (2018-11-01). "The Carnian Pluvial Episode: from discovery, through obscurity, to acceptance". Journal of the Geological Society. 175 (6): 989–992. Bibcode:2018JGSoc.175..989S. doi:10.1144/jgs2018-020. ISSN 0016-7649. S2CID 134913436.
- 1 2 3 Simms, Michael J.; Ruffell, Alastair H. (1990-03-01). "Climatic and biotic change in the late Triassic". Journal of the Geological Society. 147 (2): 321–327. Bibcode:1990JGSoc.147..321S. doi:10.1144/gsjgs.147.2.0321. ISSN 0016-7649. S2CID 129891825.
- 1 2 Simms, M.J., Ruffell, A.H. and Johnson, A.L.A. 1994. Biotic and climatic changes in the late Triassic of Europe and adjacent areas. Pp. 352-365 in N.C.Fraser and Hans Dieter-Suess (eds), In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods, Cambridge University Press.
- ↑ Visscher, H.; Van Houte, M.; Brugman, W. A.; Poort, R. J. (1994-09-01). "Rejection of a Carnian (Late triassic) "pluvial event" in Europe". Review of Palaeobotany and Palynology. 83 (1): 217–226. doi:10.1016/0034-6667(94)90070-1. ISSN 0034-6667.
- 1 2 Preto, Nereo; Kustatscher, Evelyn; Wignall, Paul B. (2010-04-15). "Triassic climates — State of the art and perspectives". Palaeogeography, Palaeoclimatology, Palaeoecology. 290 (1): 1–10. Bibcode:2010PPP...290....1P. doi:10.1016/j.palaeo.2010.03.015. ISSN 0031-0182.
- ↑ Roghi, Guido (2004-11-01). "Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy)". Review of Palaeobotany and Palynology. 132 (1): 1–35. doi:10.1016/j.revpalbo.2004.03.001. ISSN 0034-6667.
- ↑ Kozur, Heinz W.; Bachmann, G. H. (2010-04-15). "The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. Triassic climates. 290 (1): 107–119. Bibcode:2010PPP...290..107K. doi:10.1016/j.palaeo.2009.11.004. ISSN 0031-0182.
- ↑ Ogg, James G. (2015-04-01). "The mysterious Mid-Carnian "Wet Intermezzo" global event". Journal of Earth Science. 26 (2): 181–191. doi:10.1007/s12583-015-0527-x. ISSN 1867-111X. S2CID 56153637.
- ↑ Ruffell, A.; Simms, M. J.; Wignall, P. B. (2016). "The Carnian Humid Episode of the late Triassic: a review". Geological Magazine. 153 (2): 271–284. Bibcode:2016GeoM..153..271R. doi:10.1017/S0016756815000424. ISSN 0016-7568. S2CID 128596906.
- 1 2 3 Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S. (2016-06-15). "Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China". Earth and Planetary Science Letters. 444: 88–100. Bibcode:2016E&PSL.444...88S. doi:10.1016/j.epsl.2016.03.037. ISSN 0012-821X.
- 1 2 Mueller, Steven; Krystyn, Leopold; Kürschner, Wolfram M. (January 2016). "Climate variability during the Carnian Pluvial Phase — A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria". Palaeogeography, Palaeoclimatology, Palaeoecology. 441: 198–211. Bibcode:2016PPP...441..198M. doi:10.1016/j.palaeo.2015.06.008. ISSN 0031-0182.
- ↑ Shi, Zhiqiang; Preto, Nereo; Jiang, Haishui; Krystyn, Leopold; Zhang, Yang; Ogg, James G.; Jin, Xin; Yuan, Jinling; Yang, Xiaokang; Du, Yixing (2017-05-15). "Demise of Late Triassic sponge mounds along the northwestern margin of the Yangtze Block, South China: Related to the Carnian Pluvial Phase?". Palaeogeography, Palaeoclimatology, Palaeoecology. Biosedimentary records of China from the Precambrian to present. 474: 247–263. Bibcode:2017PPP...474..247S. doi:10.1016/j.palaeo.2016.10.031. ISSN 0031-0182.
- 1 2 3 Hornung, T.; Brandner, R.; Krystin, L.; Joachimski, M.M.; Keim, L. (2007). "Multistratigraphic constrains in the NW Tethyan "Carnina Crisis"". New Mexico Museum of Natural History and Science Bulletin. 41: 59–67.
- 1 2 Xu, Guangping; Hannah, Judith L.; Stein, Holly J.; Mørk, Atle; Vigran, Jorunn Os; Bingen, Bernard; Schutt, Derek L.; Lundschien, Bjørn A. (2014-02-01). "Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales". Palaeogeography, Palaeoclimatology, Palaeoecology. 395: 222–232. Bibcode:2014PPP...395..222X. doi:10.1016/j.palaeo.2013.12.027. ISSN 0031-0182.
- ↑ Dal Corso, Jacopo; et al. (2018). "First workshop on the Carnian Pluvial Episode (Late Triassic)" (PDF). Albertiana. 44: 49–57.
- ↑ Simms, Michael, J. "Triassic palaeokarst in Britain". Cave Science. Cave Science (17): 93–101.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Whiteside, D. I.; Marshall, J. E. A. (January 2008). "The age, fauna and palaeoenvironment of the Late Triassic fissure deposits of Tytherington, South Gloucestershire, UK". Geological Magazine. 145 (1): 105–147. doi:10.1017/S0016756807003925. ISSN 1469-5081. S2CID 129614690.
- ↑ Rigo, Manuel; Joachimski, Michael M. (2010). "Palaeoecology of Late Triassic conodonts: Constraints from oxygen isotopes in biogenic apatite" (PDF). Acta Palaeontologica Polonica. 55 (3): 471–478. doi:10.4202/app.2009.0100. S2CID 128833509.
- 1 2 Dal Corso, Jacopo; Gianolla, Piero; Newton, Robert J.; Franceschi, Marco; Roghi, Guido; Caggiati, Marcello; Raucsik, Béla; Budai, Tamás; Haas, János; Preto, Nereo (2015-04-01). "Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)" (PDF). Global and Planetary Change. 127: 79–90. Bibcode:2015GPC...127...79D. doi:10.1016/j.gloplacha.2015.01.013. hdl:11392/2291442. ISSN 0921-8181.
- ↑ Sun, Y.D.; Richoz, S.; Krystyn, L.; Zhang, Z.T.; Joachimski, M.M. (2019). "Perturbations in the carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman" (PDF). Journal of the Geological Society. 176 (1): 167–177. Bibcode:2019JGSoc.176..167S. doi:10.1144/jgs2017-170. ISSN 0016-7649. S2CID 135413044.
- ↑ Li, Ziheng; Chen, Zhong-Qiang; Zhang, Feifei; Ogg, James G.; Zhao, Laishi (2020-12-01). "Global carbon cycle perturbations triggered by volatile volcanism and ecosystem responses during the Carnian Pluvial Episode (late Triassic)". Earth-Science Reviews. 211: 103404. Bibcode:2020ESRv..21103404L. doi:10.1016/j.earscirev.2020.103404. ISSN 0012-8252. S2CID 225105196.
- ↑ Dal Corso, Jacopo; Gianolla, Piero; Rigo, Manuel; Franceschi, Marco; Roghi, Guido; Mietto, Paolo; Manfrin, Stefano; Raucsik, Béla; Budai, Tamás; Jenkyns, Hugh C.; Reymond, Claire E. (2018-10-01). "Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic)". Earth-Science Reviews. 185: 732–750. Bibcode:2018ESRv..185..732D. doi:10.1016/j.earscirev.2018.07.004. hdl:11392/2391572. ISSN 0012-8252. S2CID 133773525.
- ↑ Nozaki, Tatsuo; Nikaido, Takashi; Onoue, Tetsuji; Takaya, Yutaro; Sato, Keiko; Kimura, Jun-Ichi; Chang, Qing; Yamashita, Daisuke; Sato, Honami; Suzuki, Katsuhiko; Kato, Yasuhiro (2019-06-15). "Triassic marine Os isotope record from a pelagic chert succession, Sakahogi section, Mino Belt, southwest Japan". Journal of Asian Earth Sciences: X. 1: 100004. doi:10.1016/j.jaesx.2018.100004. ISSN 2590-0560. S2CID 134675515.
- ↑ Tomimatsu, Yuki; Nozaki, Tatsuo; Sato, Honami; Takaya, Yutaro; Kimura, Jun-Ichi; Chang, Qing; Naraoka, Hiroshi; Rigo, Manuel; Onoue, Tetsuji (2021-02-01). "Marine osmium isotope record during the Carnian "pluvial episode" (Late Triassic) in the pelagic Panthalassa Ocean". Global and Planetary Change. 197: 103387. Bibcode:2021GPC...19703387T. doi:10.1016/j.gloplacha.2020.103387. hdl:11577/3392405. ISSN 0921-8181. S2CID 229421005.
- ↑ Mazaheri-Johari, Mina; Gianolla, Piero; Mather, Tamsin A.; Frieling, Joost; Chu, Daoliang; Dal Corso, Jacopo (2021-08-30). "Mercury deposition in Western Tethys during the Carnian Pluvial Episode (Late Triassic)". Scientific Reports. 11 (1): 17339. Bibcode:2021NatSR..1117339M. doi:10.1038/s41598-021-96890-8. ISSN 2045-2322. PMC 8405686. PMID 34462517.
- 1 2 Zhao, He; Grasby, Stephen E.; Wang, Xiangdong; Zhang, Lei; Liu, Yongsheng; Chen, Zhong-Qiang; Hu, Zhaochu; Huang, Yuangeng (2022-03-02). "Mercury enrichments during the Carnian Pluvial Event (Late Triassic) in South China". GSA Bulletin. 134 (9–10): 2709–2720. Bibcode:2022GSAB..134.2709Z. doi:10.1130/B36205.1. ISSN 0016-7606.
- ↑ Lu, Jing; Zhang, Peixin; Dal Corso, Jacopo; Yang, Minfang; Wignall, Paul B.; Greene, Sarah E.; Shao, Longyi; Lyu, Dan; Hilton, Jason (2021-10-05). "Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic)". Proceedings of the National Academy of Sciences. 118 (40): e2109895118. Bibcode:2021PNAS..11809895L. doi:10.1073/pnas.2109895118. ISSN 0027-8424. PMC 8501800. PMID 34580231.
- 1 2 Bernardi, Massimo; Gianolla, Piero; Petti, Fabio Massimo; Mietto, Paolo; Benton, Michael J. (2018-04-16). "Dinosaur diversification linked with the Carnian Pluvial Episode". Nature Communications. 9 (1): 1499. Bibcode:2018NatCo...9.1499B. doi:10.1038/s41467-018-03996-1. ISSN 2041-1723. PMC 5902586. PMID 29662063.
- ↑ Langer, Max Cardoso; Godoy, Pedro L. (2022). "So Volcanoes Created the Dinosaurs? A Quantitative Characterization of the Early Evolution of Terrestrial Pan-Aves". Frontiers in Earth Science. 10: 899562. Bibcode:2022FrEaS..10.9562L. doi:10.3389/feart.2022.899562. ISSN 2296-6463.
- 1 2 Seyfullah, Leyla J.; Roghi, Guido; Corso, Jacopo Dal; Schmidt, Alexander R. (2018-11-01). "The Carnian Pluvial Episode and the first global appearance of amber". Journal of the Geological Society. 175 (6): 1012–1018. Bibcode:2018JGSoc.175.1012S. doi:10.1144/jgs2017-143. ISSN 0016-7649. S2CID 133621166.
- ↑ Schmidt, Alexander R.; Jancke, Saskia; Lindquist, Evert E.; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C.; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A. (2012-09-11). "Arthropods in amber from the Triassic Period". Proceedings of the National Academy of Sciences. 109 (37): 14796–14801. Bibcode:2012PNAS..10914796S. doi:10.1073/pnas.1208464109. ISSN 0027-8424. PMC 3443139. PMID 22927387.
- ↑ Seyfullah, Leyla J.; Beimforde, Christina; Dal Corso, Jacopo; Perrichot, Vincent; Rikkinen, Jouko; Schmidt, Alexander R. (2018). "Production and preservation of resins - past and present: Resins - past and present". Biological Reviews. 93 (3): 1684–1714. doi:10.1111/brv.12414. PMID 29726609. S2CID 19112067.
- ↑ Fu, Xiugen; Wang, Jian; Wen, Huaguo; Wang, Zhongwei; Zeng, Shengqiang; Song, Chunyan; Chen, Wenbin; Wan, Youli (1 November 2020). "A possible link between the Carnian Pluvial Event, global carbon-cycle perturbation, and volcanism: New data from the Qinghai-Tibet Plateau". Global and Planetary Change. 194: 103300. doi:10.1016/j.gloplacha.2020.103300. ISSN 0921-8181. Retrieved 1 January 2024 – via Elsevier Science Direct.