16-cell honeycomb honeycomb
(No image)
TypeHyperbolic regular honeycomb
Schläfli symbol{3,3,4,3,3}
Coxeter diagram
5-faces {3,3,4,3}
4-faces {3,3,4}
Cells {3,3}
Faces {3}
Cell figure {3}
Face figure {3,3}
Edge figure {4,3,3}
Vertex figure {3,4,3,3}
Dualself-dual
Coxeter groupX5, [3,3,4,3,3]
PropertiesRegular

In the geometry of hyperbolic 5-space, the 16-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,4,3,3}, it has three 16-cell honeycombs around each cell. It is self-dual.

It is related to the regular Euclidean 4-space 16-cell honeycomb, {3,3,4,3}.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.